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Abstract 

In this study, we establish a connection between the levels of market attentions of a stock with its 

long memory features. We construct two portfolios of US equities based on Doyle et al’s (2006) 

criteria for neglected and popular stocks and measure the degrees of persistence for their daily 

returns from January 1, 2003 to December 31, 2007. We find that all stocks except for one 

display anti-persistence in the neglect portfolio; while the popular portfolio stocks uniformly 

display random walk returns. This suggests that there is a connection between the persistence 

features of stock return series and the levels of “neglect” of stocks. We use book to market ratio, 

analyst coverage, and transaction frictions to classify the levels of market neglect of stocks. 

Based on our study, while these criteria combined appear to contribute to the long memory 

features of daily returns of stocks, we also suspect the presence of other factors driving the 

persistence of stock returns.   

 

I. Introduction 

Stock performance following the reporting of unexpected earnings has been of 

considerable interest in finance and accounting literature as studies consider this is a field where 

substantial inefficiencies can be unearthed. For example, Doyle et al. (2006) identify several 

criteria presented in firms with the tendency to report surprise earnings and construct a portfolio 

of firms with big earnings surprises. They observe that the portfolio beats the market by 15% 

over the subsequent two years after the earnings surprise.  
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Doyle et al.’s criteria in firms with tendency to report surprise earnings include such 

variables as higher book-to-market ratios; higher transaction costs proxied by bigger bid-ask 

spread as a percentage of share prices; and fewer number of analysts following. These criteria 

reflect a lack of market interest in the security and an insufficiency of information available 

about the company. 

Identifying specific company features, as the approach followed by Doyle et al.’s study, 

is one approach to discover inefficiencies in stock markets. Although Doyle et al. document 

consistent variables present in surprise earnings firms and summarize the phenomena as a 

product of neglect, they leave the door open to further research in the hopes of unveiling the 

mechanics of inefficiency.  

In recent years, there is also development in the literature on measuring the inefficiency 

level of a financial time series using Hurst exponent (H). Developed for uses in hydrology, the 

Hurst exponent measures the predictability or the memory of a series by examining the change in 

the series over a rescaled range of the process. In the context of stock prices, the Hurst exponent 

measures the tendency of a financial time series to either trend in a direction, or revert to a mean. 

Hurst exponent is constrained by 0<H<1. When 0.5<H<1, indicating there is more than 50% 

chance an event will be followed by a similar event, the series is persistent with long memory 

(LM). When 0<H<0.5, indicating there is less than 50% chance an event will be followed by a 

similar event, the series is anti-persistent with LM. In other words, in a persistent time series, if 

change has been up (down) in the prior period, then the chances are that it will continue to move 

up (down) in the next period. On the other hand, anti-persistent time series is considered mean-

reverting. If change has been up (down) in the prior period, then the chances are that it will move 

to the opposite direction in the next period. When H=0.5, indicating there is a 50% chance an 



event will be followed by a similar event, the series is a stationary Geometric Brownian Motion 

(GBM) with short memory, or a random walk.  

When a financial time series is a random walk, the market is then considered efficient and 

past performance cannot predict future performance. When the series is a long memory series, 

the market is then considered not efficient and past performance can be used to predict future 

performance. Hurst exponents have been used in various studies in finding out the efficiency 

levels of different markets. For example, Kyaw et al. (2006) analyze the degree of long-term 

dependency of Latin American stock and currency markets and find that market returns in these 

markets are long-term dependent, nonnormal, and nonstationary.  

Though there are a lot of studies examining the efficiency level of various markets at the 

aggregate level, not many studies have looked at the efficiency levels of individual stocks using 

Hurst exponent. Especially, one gap existed in the literature is that not many studies have linked 

the criteria used to identify neglect of stocks to the inefficiency levels of stocks as measured by 

Hurst exponent. For example, Cajueiro and Tabak (2005) estimate the Hurst exponents for the 30 

stocks included in the Dow Jones Industrial Index. The focus on the 30 stocks in the index does 

not have any theoretical justification and to some extent is quite arbitrary. Our study tries to fill 

in the gap in the literature by linking the criteria used to identify stock neglect to the efficiency of 

individual stocks.  We will breakdown the market inefficiency by investigating the financial time 

series of firms that embody the neglect criteria observed by Doyle et al. (2006) for degrees of 

persistence. The exploration of a relationship between the parameters of surprise earnings 

documented by Doyle et al. and the long memory features of share prices may contribute to the 

development of a comprehensive understanding of the market inefficiency. Previous studies 

examining the long memory feature of aggregate market series usually use policy factors to 



explain the long memory feature existed in various markets (Kyaw et al., 2006; Los and Yu, 

2008), not many studies have looked at what are the possible driving factors that affect the long 

memory feature for individual stocks. Our study will seek to understand if the underlying criteria 

of the neglected stock consistently correspond to either persistence or anti-persistence in stock 

prices and returns series.  

The paper is organized as follows. Next section provides a review on the related literature 

on long memory of time series data and market efficiency. Section 3 presents the methodologies 

and discusses the test results. The final section concludes the paper. 

 

II. Literature 

 The large body of research exploring the varying degrees of efficiency in capital markets 

through theoretical arguments is matched in volume by the body of research exploring market 

efficiencies through direct quantitative measurements. An area of particular focus is gauging the 

level of persistence in a given market by analyzing the time series of the market performance at 

aggregate level.  

 Persistence or anti-persistence is an importance property of fractional integrated process. 

Fractal is a self-similarity character of irregular objects across many scales. It is originally 

identified in many scientific phenomena such as the shapes of coastlines and the distribution of 

rivers (Mandelbrot, 1999). In recent years, there is a wide application of fractal analysis in 

economic and financial time series data. For example, Cheung and Lai (1993) find that deviation 

from the purchasing power parity is a fractionally integrated process such that it takes several 

years for the deviation to converge back to the parity. In determining the presence of persistence 



or anti-persistence in a time series, the Hurst exponent is the accepted parameter. Although many 

techniques can be used to calculate the Hurst exponent, they vary greatly in efficacy.  

 Chamoli et al. (2006) compare the power spectrum, roughness length, semi-variogram, 

wavelet transform and rescaled range methods of calculating the Hurst exponent of a fractional 

Brownian motion time series. Using the successive random addition method, Chamoli et al. 

create fractional Brownian motion time series with known Hurst values. Through applying the 

different methods of Hurst calculation to the time series, Chamoli et al. compare the methods’ 

results with the known Hurst values. They determine that regardless of the length of the time 

series, the rescaled range analysis and wavelet transform yield the most accurate results. They 

find this result to be robust for fractional Brownian motion time series of Hurst values from 0.4 

to 0.9.  

Simonsen et al. (1998) devise a method of calculating the Hurst exponent of a time series 

using what they term the average wavelet coefficient method (AWC). By plotting the average 

wavelet coefficient of transformed data into the wavelet domain against a log-log plot, Simonsen 

et al. are able to calculate the Hurst exponent of time series characterized by a small number of 

samples with increased precision compared to Fourier transform based methods. They also 

conclude that the AWC method of calculating the Hurst is acceptable for experimental and noisy 

data.  

Jones et al. (1995) compare the wavelet packet method with the root-mean-square 

roughness and second-moment methods for calculating Hurst values. Similar to Chamoli et al., 

Jones et al. test the methods on fabricated fractional Brownian motion time series with known 

Hurst values. They conclude that the wavelet pack method is comparable to the root-mean-

square roughness and second-moment methods in accuracy, but its ability to apply different filter 



functions thereby changing the resolution scale allows for the focusing on local features and an 

increased understanding of how “energy depends on position and scale” (2509).  

While the majority of markets have been empirically proven to follow a random walk as 

per Fama’s theses, instances of financial markets or individual securities within the markets 

displaying inefficiency have been observed. Factors contributing to the existence of non-random 

walk financial markets vary from the physical age of the market to the role of external forces. 

However, more important to note is the confirmation of market characteristics that deviate from 

the assumed and idealized form of market efficiency pioneered by Fama.  

Eom et al. (2008) observe an example of a non random-walk market movement. They 

look to confirm the correlation between the weak form efficient market hypothesis and the 

predictability of changes in stock prices. Due to its property of reflecting long-term memory 

capabilities of a time series, Eom et al. calculate the Hurst exponent for 27 indices of varying 

nationality and age. They observe that more efficient and mature markets exhibit a higher degree 

of randomness and short memory with Hurst exponent closer to 0.5. Conversely, less efficient 

emerging markets are characterized by larger Hurst exponents and exhibit long-term memory 

properties.  

 Los and Yu (2006) examine the persistence characteristics of the Chinese stock markets 

by calculating the Hurst exponent for the Shanghai, Shenzhen A and Shenzhen B indices using 

multiresolution wavelet analysis. Specifically, they investigate the correlation between Chinese 

government regulation and the persistence within the country’s capital markets. They note that 

the multiresolution wavelet analysis allows them to not only calculate overall Hurst exponents 

for time series, but also Hurst exponents for various sub periods of varying macro-economic 

conditions. During times of heightened government regulation, they calculate Hurst exponents of 



0.63, 0.56 and 0.64 for the Shanghai, Shenzhen A and Shenzhen B indices respectively. In recent 

years with less frequent intervention they calculate Hurst exponents of 0.54, 0.54 and 0.55 

respectively. They conclude that the uniform transformation of all three indices from persistent 

markets to near Brownian motion indicates an increase in market efficiency within the country.  

 Cajueiro and Tabak (2005) estimate the Hurst exponent for the Dow Jones Industrial 

Index and for 30 companies included in the index. They calculate the exponent for two different 

sets of data, the open-open returns and the closed-closed returns, citing documented differences 

due to market structure leading to greater volatility among open-open returns. With data 

spanning from January 2, 1990 to December 19, 2003, Cajueiro and Tabak find evidence of 

long-term dependence in many of the individual stocks composing the index. The majority of 

stocks correspond to Hurst exponent values less than 0.50 for both open-open returns and closed-

closed returns suggesting greater degrees of anti-persistence. They also observe much greater 

levels of long-term dependence when using open-open returns, 83% displaying anti-persistence 

compared to 50% for closed-closed returns, reinforcing the notion of market structure leading to 

overreaction and heightened volatility among open-open returns. Cajueiro and Tabak suggest 

that the aggregation of individual stocks with long-term dependency into indices obfuscates their 

individual levels of persistence and creates an incorrect view of market return movements. 

Additionally, they note the significance of all long-term dependent stocks having Hurst values 

less than 0.50, suggesting previous studies were overly focused on persistent movement, or Hurst 

exponents greater than 0.50.  

Lento (2009) investigates the correlation between the profitability of several technical 

trading rules applied to 15 largest global equity markets and the Hurst exponents of the indices. 

He observes excess returns over buy and hold strategies for technical trading rules when they are 



applied to indices with Hurst values greater than 0.56. But technical trading rules underperform 

buy and hold strategies when Hurst values are less than 0.53, suggesting that profits from 

technical analysis are at least partially driven by persistence.  

As outlined above, many studies have empirically isolated inefficiencies and evaluated 

markets for their degrees of persistence using techniques to find evidence of non-random walk 

movements. However, a disconnection still exists between measures of market efficiency via the 

Hurst exponent and the criteria for neglected stocks as studied in Doyle et al. (2006). While 

many have either measured the long-term persistence of various markets and individual 

securities (Eom et al., 2008; Cajueiro and Tabak, 2005; Los and Yu, 2006), or have researched 

surprise earnings announcements caused by investor neglect (Doyle et al., 2006), a link between 

individual stock’s level of neglect and its corresponding Hurst exponent, has yet to be 

established. This study serves to establish the link by directly measuring the degrees of 

persistence for stocks whose underlying companies are characterized by Doyle et al.’s criteria of 

neglect. The benefit of bridging the gap between the bodies of research that quantitatively 

measure market efficiency via the Hurst exponent and the criteria of neglected stocks is a better 

understanding on the exact causes of market efficiency at the individual stocks level.  

 

III. Empirical Tests 

Data and Methodology 

The dataset we use for this study encompasses active US stocks traded from January 1, 

2003 through December 31, 2007. We choose this period to avoid the impact of market crashes 

in the 2001/2002 and 2008/2009 periods.  



To identify stocks that are likely to be described as neglected, we sort the stocks using 

three parameters based on Doyle et al.’s findings, the stock’s book to market ratio, the number of 

analysts following the stock, and the transaction costs proxied by bid-ask spread as a percentage 

of share prices. Adjusted daily prices are retrieved from CRSP database; book to market ratios 

are retrieved from the COMPUSTAT database; analyst coverage are from I/B/E/S database; and 

daily closing bid-ask spreads are from the CRSP database. 

Stocks are divided into ten deciles based on their book to market ratios and transaction 

costs with equal numbers of observations in each decile. The highest decile corresponds to scores 

of 1 for stocks that are most neglected as reflected in higher book to market ratios and 

transaction costs. In the grouping process based on analyst following, for stocks followed by 0-

10 analysts, their respective scores are equal to the number of analysts. For stocks with more 

than 10 analysts, we divide them into two groups with equal numbers of observations and assign 

the scores of 11 and 12 respectively. The process of assigning scores based on the parameters is 

iterated from 2003 to 2007.  

The means of the scores for each of the three grouping parameters are then combined to 

determine a stock’s overall score. Stocks with an overall score of 2, which is the lowest possible 

score with scores of 1 for book to market ratios and transaction costs parameters and 0 for 

analysts coverage parameter, are considered the neglect portfolio. Stocks with an overall score of 

30 or greater make the popular portfolio.  

To estimate the degrees of persistence of the stocks in these two portfolios, we use the 

adjusted daily closing prices of the stocks from the beginning of 2003 to the end of 2007. Several 

methods have been proposed to test long-term dependency. Most of the empirical studies rely on 

the frequency domain method originated by Geweke and Porter-Hudak (1983). However, this 



approach cannot present satisfactory estimation of asymptotic properties. The other widely used 

method is R/S (Range/Scale) based Hurst exponent (Hurst, 1951). Empirical studies based on 

Hurst’s R/S statistics generate contradicting results (Sadique and Silvapulle, 2001; Cheung and 

Lai, 1995). Among the different methods estimating Hurst exponent, wavelet Multiresolution 

Analysis (MRA) method is more powerful than other tools. Los (2003) indicates that wavelet 

MRA methodology can identify and measure the degrees of long-term dependency of financial 

time series on a more localized level. In this study, we use the wavelet MRA approach. We also 

implement an R/S test proposed by Mandelbrot (1972) and extended by Lo (1991) to compare 

the results generated by these two different methods.  

Wavelet MRA results are generated by using the online ION Script Research Systems 

Interactive Wavelet Program.
†
 The very general Morlet-6.0 wavelet is used to calculate the 

localized wavelet resonance coefficients, which are visualized in the wavelet scalogram with 

colorized resonance coefficients. The scalogram provides a time-frequency localized analysis of 

the time series. The time-average analysis is presented in a scalegram, which shows the ACF of 

the time series in the scale domain. 

There are three parts in each wavelet scalogram and scalegram plot. Part a is the original 

time series together with the illustration of the Morlet-6.0 wavelet used in the analysis. Part b is 

the scalogram, which reflects the localized wavelet power spectrum and is a colorized plot of the 

squared value of the wavelet resonance coefficients. Part c is the global wavelet scalegram, 

which plots the variances of the zero-mean wavelets against the scales and forms the statistical 

time-average of the scalogram. The negative slope of the scalegram of the level time series (β) 

has the following relationship with the monofractal Hurst exponent (H), 12  H ; and the 

                                                 
†
 The program is available at http://ion.researchsystems.com/IONScript/wavelet/. 



negative slope of the scalegram of the differences of level series equals 12  H . The two 

scalegrams should provide identical monofractal Hurst exponent value.  

In empirical studies, many financial time series have been identified to be multifractal, 

meaning monofractal Hurst exponent is not sufficient to reflect the change of Hurst exponents 

against the scales or time periods (Stavroyiannis et al., 2010; Engelen et al., 2011). In other 

words, there is marked evidence for the existence of heterogeneous Hurst exponents, each 

applicable for the frequency scaling in a sub-period. When comparing the scalegram plots of 

level series and their corresponding differences series, the plots of difference series can reveal 

more localized risk properties than the level series. In the following analysis, we will focus on 

the scalegram plots of the difference series, or return series, to examine the localized risk 

properties of each time series.  

For comparison purpose, we also simulate a benchmark series, a random walk series and 

show its corresponding difference series (white noise) in Fig. 1. The white noise series consists 

of 1200 daily returns, generated using Microsoft Excel’s random number generator. In this 

randomly generated series, there are 619 positive returns among a total of 1200 returns. In Part b 

of the wavelet analysis plot (wavelet power spectrum), the spectral peaks are evenly scattered at 

various scales and across the whole time period. In Part c of plot, the global wavelet scalegram is 

nearly perfectly vertical with only small variances being seen on either side.  

<Figure 1 about here> 

The slope of a scalegram of returns can indicate persistence, anti-persistence or a random 

walk as shown in Figure 2. When the negative slope of the Global Wavelet Scalegram (β) for the 

return series is negative, the time series will be anti-persistent. Because when β is smaller than 0, 

the monofractal Hurst exponent H will be smaller than 0.5, because H=(β+1)/2 in difference 



series. Similarly, when the negative slope of the Global Wavelet Scalegram (β) for the return 

series is positive, the time series will be persistent. Because when β is bigger than 0, the 

monofractal Hurst exponent H will be bigger than 0.5, because H=(β+1)/2 in difference series. 

<Figure 2 about here> 

 

 

Results  

 Table 1 shows the compositions of the neglect and popular portfolios, the overall ranks of 

the securities using the three neglected stock criteria. As mentioned in the previous section, the 

approximate slope of a scalegram of returns can indicate whether the return series is a persistent 

or anti-persistent series, or a random walk. 

<Table 1 about here> 

Comparing the scalegrams of returns for the neglect portfolio stocks and the popular 

portfolio stocks we see the emergence of a pattern. The neglect portfolios’ scalegrams of returns 

consistently show anti-persistence (Figure 3); whereas the popular portfolios’ scalegrams more 

closely and uniformly resemble a random walk, or a vertical slope (Figure 4).  

<Figure 3 about here> 

<Figure 4 about here> 

By noting the consistent anti-persistence among the neglected stocks’ returns, we can 

begin to see a potential explanation on the long memory of individual stocks that are 

characterized by Doyle et al.’s (2006) criteria.   

The lack of long-term memory for the popular stocks’ returns is consistent with previous 

studies findings, most prominently Cajueiro and Tabak (2005), who estimate Hurst exponents 



near 0.50 for the daily returns of all the components of the DJIA. In line with Doyle et al.’s 

neglect stock hypothesis, prominent securities such as the Dow Jones 30 or popular portfolio in 

our study are prone to greater investor interest, both institutional and individual, and are subject 

to increased attention from analysts and other forecasters. The greater demand for the security 

results in a near inexhaustible amount of available information more closely aligning with 

Fama’s efficient market hypothesis. Given the abundance of information, the daily returns 

observed are best described as white noise driven by unpredictable random events, with one 

day’s gain or loss completely independent of every other day’s gain or loss.  

Next we also implement an R/S test proposed by Mandelbrot (1972) and extended by Lo 

(1991) to compare the results generated by using wavelet MRA. We estimate the fractional 

differencing parameter d for each of series by adopting a GPH estimator proposed by Geweke 

and Porter-Hudak (1983). In calculating the GPH estimates, the Fourier frequency m is set to be 

T/2, where T is the total number of observations in the time series. Table 2 lists the estimation 

results for the d̂ ’s. In a FBM series, the differencing parameter d has the following relationship 

with H: 5.0 dHFBM . The Hurst exponents are calculated and shown in Table 2 too.  

<Table 2 about here> 

The GPH estimates d̂ ’s for popular stocks are not significantly different from 1 and their 

corresponding Hurst exponents are not significantly different 0.5. This result indicates that 

popular stocks are random walk series. Whereas in neglected stocks, except for APSA, which 

has a GPH estimates d̂ that is not significantly different from 1 and a Hurst exponent that is not 

significantly different from 0.5, all other stocks have demonstrated a anti-persistence with Hurst 

exponents significantly smaller than 0.5. This result is consistent with that of the wavelet MRA.  

 



Discussion 

To better understand why neglect portfolio experiences anti-persistent returns rather than 

a random walk as observed for popular portfolio, we further look at the differences in the 

underlying fundamentals of the portfolios.   

One of the distinguishing features of the neglect portfolio stocks is the lack of interest in 

the marketplace. Daily volumes are often zero as minimal attention is given to the securities by 

market participants. As observed through the portfolio rankings, no analysts publish I/B/E/S 

earnings forecasts and market makers are extremely hesitant to create liquidity evident by the 

high transaction fees. The vacuum of available information leads to a greater level of ambiguity 

concerning the stocks’ intrinsic values, creating the potential for a mispricing, or market 

inefficiency to persist. Intuitively, and given the abnormal returns observed by Doyle et al. 

(2006) for their neglected stocks, we would expect our neglect portfolio stocks to exhibit degrees 

of long term persistence. However, our neglect portfolio stocks are measured as having anti-

persistent returns and prices. The bigger question to ask is why our portfolio of neglected stocks, 

whose selection is based on Doyle et al’s criteria for surprise earnings, displays the mean 

reversion tendencies.  

The most logical answer traces back to the number of shares of the neglect portfolio 

stocks that are traded each day. As Table 3 shows, the average daily volumes are extremely low 

and most stocks have a price lower than $5.00, falling into the penny stock classification.  

<Table 3 about here> 

The low volume causes multiple efficiency related phenomena to occur. The first volume 

related issue is the lack of investor attempts to price the security through trading. Unlike more 

liquid securities that are constantly being bid up and down by market participants, eventually 



forming a consensus opinion on price and value, the neglect portfolio stocks are sometimes only 

subject to one trade per day, essentially leaving the pricing entirely to the buyer and his or her 

counterparty. Rather than a marketplace full of investors with a combined mosaic of information 

to be reflected in the security’s price, the daily closing price of a neglected stock is determined 

by the paltry number of individuals who chose to trade the stock on a given day, resulting in a 

considerably less amount of information being reflected in the price. 

The second volume related issue is the potential for the buyers and sellers of the 

neglected stocks to inadvertently move the market with their orders. The illiquidity of the stocks 

means buyers will have to pay a premium or sellers will have to suffer a discount in order to 

move their shares.  

An investor looking to unload a large block of shares will therefore drive the price of the 

neglected shares down. Other investors may observe the decline. Lacking any substantial 

information, they may assume the stock to be trading at a discount and purchase shares looking 

to make a quick profit. The purchase of shares will then drive the price back up as the buyer’s 

counterparty profits on the large spread. As a result, there is potential for a large amount of the 

daily movement observed in the neglected securities to be caused by the previously described 

circumstances.  

Another feature of our results is a better understanding of the reliability of global Hurst 

exponent as a means of measuring persistence in a financial time series and the importance of the 

date range of the data used in the estimations. The date range of the data is simply the period in 

time from which the closing prices of the stocks are taken. The conundrum is as follows, choose 

a range too short and there is an insufficient amount of data to form robust conclusions, choose a 

range too long and the markets are prone to experiencing structural changes, thus skewing the 



resulting measurements of memory. As mentioned in previous section, the range of January 1, 

2003 to December 31, 2007 is selected for its position between the dotcom bubble of the early 

2000s and the credit crisis of 2008. The date range provides a relatively large number of data 

points (1258 closing prices) and a “normal” period of economic expansion.  

However, despite choosing a range free of market-wide aberrations and/or fundamental 

changes such as bubbles or recessions, in evaluating the effectiveness of our data range we must 

be cognizant of the risk of greater changes to underlying characteristics of the stocks being 

analyzed that accompany multi-year periods. Changes in features such as analyst coverage, book 

to market ratios, or daily volumes of shares traded will decrease the reliability of the link 

between the calculated persistence and the hypothesized drivers of dependency. Similarly, if we 

choose a range too short we run into the risk of not having a sufficient sample size to generate a 

statistically reliable conclusion. Fortunately, the consistency in our results, namely the 

correlation between anti-persistent returns and our neglected portfolio stocks versus the random-

walks of our popular portfolio stocks, suggests that a data set of approximately 1300 points is 

capable of accurately describing global trends of securities’ prices.  

Limitations of our findings must also be mentioned, as they are both relevant to our 

conclusions and to stimulating of future studies. While the size of our data set is capable of 

generating interpretable results, there exists a distinct possibility that the results are exclusive to 

the years 2003 to 2007. As described above, macroeconomic trends stand to alter the behavior of 

equities considerably, which could in turn permute the connection between the criteria of neglect 

and the anti-persistence of returns. Figure 5 illustrates the sensitivity of a stock’s (MSFT) 

memory to changes in the period being analyzed. Examining the two different power spectrums 



and scalegrams, we can see a stark difference between the memories of daily returns from July 7, 

2005 to December 31, 2007 and from July 7, 2008 to December 31, 2010.  

<Figure 5 about here> 

 
The scalegram of MSFT’s daily returns from the earlier range (a subset of the range used 

to calculate MSFT’s scalegram in figure 4) appears relatively vertical and is concurrent with the 

random-walk observed for our original 2003-2007 range. The scalegram for the later period 

deviates from a vertical line and instead is slightly positively sloped suggesting anti-persistence. 

This counter-example strives to illustrate the effect market-trends can have on a stock’s global 

Hurst exponent. We see extreme volatility of returns from days 70-150 for MSFT Returns 

(LATER) and large variances or “shocks” in its power spectrum for the same sub period. The 

period of returns for MSFT Returns (LATER) begins on 7/7/08. We conclude that the shocks in 

the power spectrum correspond to the effects of the credit crisis and the conflagration of losses in 

the financial markets. This serves to demonstrate the power of systematic trends or events on the 

global Hurst exponent. While our results, concurrent with previous findings, suggest that popular 

stocks such as MSFT likely have random-walks for returns, if certain data sets are used for 

analysis there is the potential for non-consistent results.  

 Our results recognize the vulnerability of the monofractal Hurst exponent to both 

changes in market conditions and underlying characteristics but also establish a precedent for 

connecting select fundamentals of stocks with their degrees of persistence for daily returns. We 

surmise that our results demonstrate the potential to establish interconnection and are an 

important first step in the effort to devise a veritable solution.  

 

IV. Conclusion 



In this study we construct two portfolios of US equities based on Doyle et al’s criteria for 

neglected and popular stocks and measure the degrees of persistence for their daily returns from 

January 1, 2003 to December 31, 2007. We find that all stocks except for one display anti-

persistence in the neglect portfolio; while the popular portfolio stocks uniformly display random 

walk returns. This suggests that there is a connection between the persistence feature of stock 

return series and the levels of “neglect” presented by Doyle et al. However, while book to market 

ratio, analyst coverage, and transaction frictions appear to contribute to the memory features of 

daily returns of stocks, we also suspect the presence of other factors driving the persistence of 

these time series.  

Our study focuses on 2003-2007, a period of relative financial tranquility. Other periods 

containing large events or disruptions to normal market behavior may create a structural change 

in a stock’s monofractal Hurst exponent. Improvements should be made in future studies to 

search for more relevant fundamental factors that can affect the persistence of stock return series.  

A final point worth noting is the potential limitations of a trading strategy based on the 

exploitation of inefficiencies present in neglected stocks. As observed by Doyle et al. (2003), 

while their portfolio of neglected stocks does exhibit abnormal returns, large frictions present a 

likely obstacle to exploitation. We observe similar transaction expenses driven primarily by a 

lack of liquidity in our neglect portfolio and reason that operational inefficiencies in the 

marketplace prevent the opportunity for exploitation. Our results suggest that our neglected 

stocks’ price changes are driven by market moving trades, rather than the dissemination of 

positive news into the market, and a reluctance of neglected securities to absorb the information 

as posited by Doyle et al.    



That being said, future studies still stand to benefit from further investigation of the 

relationship between the levels of neglect and the persistence of stocks. Adjusting such 

parameters as the range of dates used could lead to more conclusive results through an increased 

understanding of the effect of the time period on a stock’s memory. Additionally, while we 

interpret high book to market ratios, low analyst coverage, and high transaction frictions as 

possible drivers of anti-persistence, a more comprehensive combination of factors would make 

the results more applicable. These factors would provide identifying mechanisms for stocks 

poised to follow relatively predictable trends. Thus, the documenting of criteria for persistence 

combined with an increase in the generality of a global Hurst exponent’s applicability could truly 

begin to set the stage for the development of a profitable trading strategy based on stocks’ 

measured memories and a corresponding tendency to outperform the market.  
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Appendix 

Figure 1: Wavelet scalogram and scalegram of white noise series 

 

 

Notes: The white noise series consists of 1200 “daily returns”, generated using Microsoft Excel’s random number 

generator. In this randomly generated series, there are 619 positive returns among a total of 1200 returns. In Part b of 

the plot, the spectral peaks are evenly scattered at various scales and across the whole time period. In Part c of the 

plot, the global wavelet (scalegram) is nearly perfectly vertical with small variances being seen on either side.  

 



 

Table 1: Popular and Neglected Portfolios, Criteria Ranks, and Hurst Exponents 

Popular Portfolio           

Name Ticker 

BM 

Rank 

Analyst 

Rank 

Transaction Cost 

Rank 

Overall 

Rank 

AMGEN INC AMGN 8.2 12 10 30.2 

BROADCOM CORP BRCM 8.6 12 10 30.6 

CISCO SYSTEMS INC CSCO 8.6 12 10 30.6 

ALTERA CORP ALTR 8.8 12 10 30.8 

EBAY INC EBAY 8.8 12 10 30.8 

MICROSOFT CORP MSFT 8.8 12 10 30.8 

QUALCOMM INC QCOM 8.8 12 10 30.8 

YAHOO INC YHOO 8.8 12 10 30.8 

SCHLUMBERGER LTD SLB 9 12 10 31 

GILEAD SCIENCES INC GILD 9.6 12 10 31.6 

Neglect Portfolio       

Name Ticker 

BM 

Rank 

Analyst 

Rank 

Transaction Cost 

Rank 

Overall 

Rank 

SECURITY NATIONAL FINANCIAL CORP. SNFCA 1 0 1 2 

ATLANTIC AMERICAN CORP AAME 1 0 1 2 

MAYS (J.W.) INC MAYS 1 0 1 2 

KENT FINANCIAL SERVICES INC KENT 1 0 1 2 

MACC PRIVATE EQUITIES INC MACC 1 0 1 2 

TAITRON COMPONENTS TAIT 1 0 1 2 

ALTO PALERMO S.A. APSA 1 0 1 2 

Notes: BM Rank is the rank based on the security’s book to market ratio. Analyst Rank is the rank based on the number of analysts issuing 

forecasts. Transaction Cost Rank is the rank based on the size of the bid-ask spread for the security. Overall Rank is the aggregate of the 

previous three scores.  

 

 

 



 

Figure 2: Scalegrams of Anti-persistent, Random-walk, and Persistent Returns 

 

The return scalegrams for an anti-persistent, random walk and persistent time series are shown above. The red lines 

denote the approximate trends of the scalegrams with anti-persistent and persistent being positive and negatively 

sloped with respect to the vertical scalegram for a random walk. Notice that the lines are approximations of the 

scalegrams’ trends.  

 

  



Figure 3: Scalegrams of Neglected Portfolio Returns 

 

Notes: Scalegrams of daily returns for the neglected portfolio stocks. Most important to note is the anti-persistent 

trend among the seven securities. While the negative slope is more apparent in some (KENT, MACC) than others 

(SNFCA, APSA), for all neglected stocks, there is an observable non vertical slope.   

 

  



Figure 4: Scalegrams of Popular Portfolio Returns 

 

Notes: Scalegrams of daily returns for the popular portfolio stocks. Unlike the scalegrams of the neglected portfolio, 

the popular portfolio all exhibit near vertical scalegrams, indicating the random walk feature of the stock series.  

 

 

 



Table 2 Fractional differencing parameter: GPH estimators of the popular and neglected stocks series 

 
Popular stocks 

  
MSFT AMGN SLB ALTR CSCO QCOM GILD YHOO BRCM EBAY 

GPH Estimator, d bandwidth = T/2 0.9940 0.9998 1.0008 0.9750 0.9989 1.0207 1.0009 1.0017 0.9832 1.0295 

 

Standard deviation 0.0245 0.0284 0.0173 0.0278 0.0266 0.0272 0.0158 0.0268 0.0288 0.0294 

            

 

Hurst Exponent 0.4940 0.4998 0.5008 0.4750 0.4989 0.5207 0.5009 0.5017 0.4832 0.5295 

 

Neglected stocks 

  
SNFCA AAME MAYS KENT MACC TAIT APSA 

GPH Estimator, d bandwidth = T/2 0.8870 0.8357 0.9381 0.8191 0.6279 0.8023 0.9767 

 

Standard deviation 0.0323 0.0279 0.0273 0.0275 0.0272 0.0298 0.0247 

         

 

Hurst Exponent 0.3870 0.3357 0.4381 0.3191 0.1279 0.3023 0.4767 

 

 

Table 3: Neglect Portfolio Average Daily Closing Prices and Volume 

Neglect Portfolio         

Name Ticker Exchange 

Avg. Daily 

Volume 

Avg. Daily Closing 

Price 

SECURITY NATIONAL FINANCIAL 

CORP. SNFCA NASDAQ 5,702 $3.76 

ATLANTIC AMERICAN CORP AAME NASDAQ 7,496 $2.85 

MAYS (J.W.) INC MAYS NASDAQ 290 $16.75 

KENT FINANCIAL SERVICES INC KENT NASDAQ 11,304 $2.16 

MACC PRIVATE EQUITIES INC MACC PINK 2,686 $2.68 

TAITRON COMPONENTS TAIT NASDAQ 4,718 $1.79 

ALTO PALERMO S.A. APSA NASDAQ 1,837 $10.17 

Notes: Average daily volumes are the mean values from January 1, 2003 to December 31, 2007. 



Figure 5: Scalegrams of Returns for MSFT for Varying Data Ranges 

 

On the left is the chart of daily returns, the power spectrum and the scalegram for MSFT from 7/2/05-12/31/07 and on the right is the same plots for MSFT from 

7/7/08-12/31/10. One thing to note is the relative verticalness of the two scalegrams with the earlier data set resulting in a random-walk and the later data set 

suggesting anti-persistence in the returns. The volatility occurring from approximately day 70-150 on the chart and power spectrum of MSFT Returns (LATER) 

correspond with the financial crisis and shocks to the overall market. We posit that this event is a driver of the observance of anti-persistence in MSFT’s daily 

returns and note the susceptibility of global Hurst exponents to be influenced by such occurrences.  

 

 


